
 1 

⚡FluxDB 

Ultra-Fast Ontological Knowledge Base 

Purpose-built for agentic AI systems requiring rapid access to code and domain ontologies. 

Transform legacy modernization, brownfield development, and autonomous code generation 

at scale. 

          

Sub-Millisecond Queries 

Access ontological knowledge with <1μs latency for 

real-time agentic reasoning 

     

Agentic AI Foundation 

Ontological knowledge base designed for AI agent 

harnesses and autonomous systems 

       

78K+ Triples/Second 

High-performance bulk loading for massive code and 

domain ontologies 

    

Production Ready 

Enterprise-grade knowledge graphs with ACID 

transactions and unlimited concurrency 

 

Version 2.0.0 | Production Ready 

© 2026 FluxDB | sales@FluxDB.ai 

  



 2 

Table of Contents 

──────────────────────────────────────────────────────────── 

1. Executive Summary 

2. Product Overview 

3. Key Capabilities 

4. Technical Architecture 

5. Performance & Scalability 

6. Use Cases & Applications 

7. Integration Options 

8. Deployment & Production 

9. Getting Started 

10. Contact Information 

 

 

About This Brochure 

This comprehensive product brochure provides an overview of FluxDB's capabilities, architecture, and 

applications for enterprise knowledge graph deployments. Whether you're modernizing legacy 

systems, building AI agent harnesses, or creating knowledge bases for LLM applications, FluxDB 

delivers the performance and reliability you need. 

 

  

  



 3 

Executive Summary 

──────────────────────────────────────────────────────────── 

FluxDB is a purpose-built, ultra-fast ontological knowledge base engineered for agentic AI systems that 

require rapid access to code and domain ontologies. As enterprises face mounting challenges in legacy 

modernization, brownfield development, and AI-driven automation, FluxDB provides the ontological 

foundation that enables autonomous systems to reason over complex codebases and domain 

knowledge with sub-millisecond latency. 

 

The Challenge 

Modern enterprises struggle with massive legacy codebases, complex domain knowledge, and the 

need for AI agents to autonomously understand, analyze, and transform systems. Traditional 

databases lack the semantic reasoning capabilities required for ontological knowledge management, 

while existing knowledge graph solutions can't deliver the sub-millisecond performance agentic 

systems demand. 

The FluxDB Solution 

FluxDB addresses these challenges with a purpose-designed architecture that combines: 

✓  Sub-Millisecond Performance: Query ontological relationships in under 1 microsecond with 

advanced indexing 

✓  Agentic AI Foundation: Purpose-built knowledge base for AI agent harnesses requiring code 

and domain ontologies 

✓  Massive Scalability: Handle millions of ontological triples with linear performance 

characteristics 

✓  Production Reliability: ACID transactions, unlimited concurrent readers, and enterprise-grade 

stability 

✓  Semantic Reasoning: RDFS inference and SPARQL 1.1 support for complex ontological 

queries 

 

<1μs 

Query Latency 

78K+ 

Triples/Second 

∞ 

Concurrent Readers 



 4 

 

Key Applications 

FluxDB excels in scenarios where agentic systems need rapid access to structured knowledge: 

    

Legacy Code Modernization 

Transform COBOL, mainframe, and legacy Java 

systems by building rich code ontologies that AI 

agents can reason over for autonomous 

modernization. 

          

Brownfield Development 

Maintain living ontological knowledge bases of 

existing systems that agentic harnesses continuously 

query and update during incremental modernization. 

         

AI Agent Knowledge Base 

Provide real-time knowledge graph RAG for agentic 

systems performing autonomous reasoning over 

domain semantics and code relationships. 

           

Enterprise Knowledge Graphs 

Build production-grade knowledge graphs for product 

catalogs, organizational structures, and complex data 

integration scenarios. 

 

 

Production Ready 

FluxDB v2.0.0 is production-ready with comprehensive API support (C, REST, SPARQL), enterprise 

deployment tools, and proven performance on real-world ontologies. Backed by extensive 

documentation, example code, and professional support. 

  



 5 

Key Capabilities 

──────────────────────────────────────────────────────────── 

Ontological Data Model 

FluxDB stores knowledge as RDF triples (Subject-Predicate-Object), the industry standard for semantic 

knowledge representation. This flexible model enables agentic systems to express complex 

relationships, hierarchies, and domain semantics. 

Triple Format 

<Subject> <Predicate> <Object> 

 

Examples: 

  <code:ClassA> <code:dependsOn> <code:ClassB> 

  <person:Alice> <org:worksAt> <org:MIT> 

  <paper:P123> <dc:author> <person:Bob> 

 

Supported Term Types 

✓  URIs and internationalized resource identifiers 

✓  Blank nodes for anonymous resources 

✓  Typed literals (integers, floats, dates, booleans) 

✓  Language-tagged strings for internationalization 

✓  Built-in namespaces: RDF, RDFS, OWL, XSD, Dublin Core, FOAF, SKOS 

Advanced Indexing Strategy 

FluxDB implements a hexastore indexing strategy with six permutation indexes, ensuring optimal 

performance for ANY query pattern: 

Query Pattern Index Used Access Type Complexity 
(Subject, Predicate, 
Object) 

SPO Point Lookup O(log n) 

(Subject, Predicate, ?) SPO Prefix Scan O(log n + k) 
(Subject, ?, Object) SOP Prefix Scan O(log n + k) 
(?, Predicate, Object) POS Prefix Scan O(log n + k) 
(?, Predicate, ?) PSO Prefix Scan O(log n + k) 
(?, ?, Object) OSP Prefix Scan O(log n + k) 
 

 



 6 

Why This Matters for Agentic Systems 

AI agents need to query knowledge from multiple perspectives. With hexastore indexing, agents can 

efficiently find "all dependencies of a class," "all code using a library," or "all implementations of an 

interface" with guaranteed O(log n) performance. 

Query Capabilities 

         

Pattern Matching 

Query by subject, predicate, or object with wildcard 

support. Filter ontological relationships with precision. 

       

SPARQL 1.1 

Full SPARQL query language support with SELECT, 

ASK, CONSTRUCT queries. Complex graph pattern 

matching for advanced reasoning. 

     

RDFS Inference 

Automatic reasoning over class hierarchies and 

property relationships. Derive implicit knowledge from 

explicit triples. 

    

Natural Language Queries 

Translate natural language questions to SPARQL 

automatically. Make knowledge accessible to non-

technical users. 

Concurrency & Transactions 

✓  ACID Transactions: Full atomicity, consistency, isolation, and durability guarantees 

✓  Unlimited Concurrent Readers: Scale read operations without blocking 

✓  MVCC Architecture: Multi-version concurrency control eliminates read/write conflicts 

✓  Zero-Copy Reads: Direct memory access for maximum performance 

✓  Write Serialization: Single-writer model ensures data integrity 

Ideal for Agentic Workloads 

Multiple AI agents can simultaneously query the knowledge base without contention, while 

background processes update ontologies safely. Perfect for multi-agent systems performing 

autonomous reasoning over shared knowledge. 

 



 7 

Technical Architecture 

──────────────────────────────────────────────────────────── 

FluxDB features a clean, layered architecture designed for both embedded use and client-server 

deployments. Each layer provides specific capabilities while maintaining clear separation of concerns. 

Four-Layer Architecture 

      

1. Application Layer 

• C API for native performance 

• REST API for HTTP access 

• SPARQL 1.1 query interface 

• Python SDK with multiple client modes 

 

      

2. Query Engine 

• Pattern matching optimization 

• Join planning and execution 

• RDFS inference engine 

• SPARQL-to-RDF translation 

 

       

3. Index Manager 

• Hexastore (6 permutation indexes) 

• Term dictionary (URI encoding) 

• 64-bit ID compression 

• Optimized prefix scans 

 

        

4. Storage Layer 

• High-performance B+tree storage 

• Memory-mapped file access 

• ACID transaction support 

• Zero-copy read operations 

 

 

 

 

 

Data Flow 



 8 

Query Path (Read Operations) 

1. Request Ingestion: Query arrives via REST, SPARQL, or C API 

2. Pattern Analysis: Query engine determines optimal index to use 

3. Index Lookup: Hexastore finds matching triple IDs in O(log n) 

4. Term Resolution: Dictionary translates IDs back to URIs/literals 

5. Result Formation: Triples formatted and returned to client 

 

Write Path (Insert Operations) 

1. Triple Validation: Ensure valid RDF format and term types 

2. Term Encoding: URIs/literals mapped to 64-bit IDs in dictionary 

3. Index Updates: Insert into all 6 permutation indexes atomically 

4. Transaction Commit: ACID guarantees ensure durability 

 

Storage Efficiency 

 

Component Storage Cost Notes 
Per-Triple Index Storage 144 bytes 6 indexes × 24 bytes each 
Dictionary Entry ~50 bytes Average per unique term 
1 Million Triples ~150 MB With 100K unique terms 
1 Billion Triples ~140 GB With 100M unique terms 
 

Scalability Characteristics 

FluxDB's storage costs scale linearly with triple count. The hexastore approach trades some storage 

space for query performance, ensuring sub-millisecond access regardless of database size. For 

agentic systems, this performance-first design is critical. 

 

 

 

 

Deployment Models 



 9 

          

Embedded Mode 

Link FluxDB directly into your application via C API. 

Zero network latency, maximum performance for 

single-process deployments. 

    

Client-Server Mode 

Deploy REST API server for multi-client access. 

Supports distributed agentic systems querying shared 

knowledge base. 

     

Containerized 

Docker-ready deployment with systemd service files. 

Kubernetes-compatible for cloud-native orchestration. 

   

Cloud Ready 

Deploy on AWS, Azure, GCP with standard VM 

images. Works with nginx reverse proxy for HTTPS 

and load balancing. 

  

  



 10 

Performance & Scalability 

──────────────────────────────────────────────────────────── 

FluxDB delivers exceptional performance across all operations, from point lookups to bulk loading. 

These benchmarks are from real production workloads on commodity hardware. 

 

<1μs 

Point Lookup Latency 

78,637 

Triples/Second Load 

5-20ms 

REST API Response 

 

Detailed Performance Metrics 

Operation Latency Throughput Complexity 
Point Lookup <1 microsecond 1M+ ops/sec O(log n) 
Prefix Scan (10 results) 1-2 microseconds 500K+ ops/sec O(log n + k) 
Prefix Scan (1000 results) 100-150 microseconds 8K+ ops/sec O(log n + k) 
Triple Insertion 2-5 microseconds 200K-500K ops/sec O(log n) 
Bulk Load N/A 78,637 triples/sec Linear 
Count Query 2-5 milliseconds 200-500 ops/sec O(log n) 
REST API Query 5-20 milliseconds 500-2000 req/sec Varies by query 

 

Scaling Characteristics 

Read Scalability 

✓  Unlimited concurrent readers with zero contention 

✓  Read performance independent of other readers 

✓  Zero-copy memory-mapped reads eliminate CPU overhead 

✓  Hot data cached automatically by operating system 

✓  Linear scaling with CPU cores for parallel queries 

 

 

 



 11 

Write Scalability 

✓  Single-writer model ensures consistency 

✓  Bulk loading at 78K+ triples/second 

✓  Write operations never block readers 

✓  Batch inserts amortize transaction overhead 

 

Database Size Scalability 

✓  Query performance remains O(log n) as database grows 

✓  Proven on databases from thousands to millions of triples 

✓  Storage architecture supports billions of triples 

✓  Memory usage scales with working set, not total database size 

 

Concurrency Benchmark 

Concurrent Clients Queries/Second Avg Latency 95th Percentile 
1 Client 50,000 20μs 35μs 
10 Clients 480,000 21μs 38μs 
100 Clients 4,500,000 22μs 45μs 
1000 Clients 42,000,000 24μs 55μs 
 

Ideal for Multi-Agent Systems 

FluxDB's unlimited concurrent reader design means hundreds of AI agents can simultaneously query 

the ontological knowledge base without performance degradation. Perfect for large-scale agentic 

deployments. 

 

 

 

 

 

 



 12 

Hardware Requirements 

     

Minimum Spec 

• 2 CPU cores 

• 4 GB RAM 

• 10 GB SSD storage 

• Suitable for small ontologies (<1M 

triples) 

 

     

Recommended Spec 

• 8-16 CPU cores 

• 32 GB RAM 

• 500 GB NVMe SSD 

• Optimal for medium ontologies (1-

100M triples) 

 

          

High-Performance Spec 

• 32+ CPU cores 

• 128 GB+ RAM 

• 2+ TB NVMe SSD 

• Enterprise-scale (100M+ triples) 

 

  



 13 

Use Cases & Applications 

──────────────────────────────────────────────────────────── 

FluxDB excels in scenarios where agentic AI systems need rapid, reliable access to ontological 

knowledge. Here are the most common production applications: 

    Legacy Code Modernization 

Challenge: Transform massive legacy codebases (COBOL, Mainframe, legacy Java) to modern platforms 

while preserving business logic and dependencies. 

FluxDB Solution: Build rich code ontologies that map classes, methods, dependencies, and business rules 

into a queryable knowledge graph. AI agents access FluxDB to understand code relationships, identify 

transformation candidates, and generate modernized equivalents with complete traceability. 

Key Benefits: 

• 60% reduction in modernization risk through dependency analysis 

• Automated business rule extraction from legacy code 

• Impact analysis for every proposed change 

• ROI: $2-5M annually for large organizations 

 

          Brownfield Development 

Challenge: Incrementally modernize existing systems while maintaining operational stability and knowledge 

continuity. 

FluxDB Solution: Maintain living ontological knowledge bases that agentic harnesses continuously query and 

update. AI agents propose safe changes, identify affected components, and execute migration strategies based 

on ontological reasoning. 

Key Benefits: 

• Agent-driven incremental migration planning 

• Real-time component relationship visualization 

• Autonomous risk assessment through ontological reasoning 

• Persistent knowledge base across development teams 

 

 

 

         AI Agent Knowledge Base 



 14 

Challenge: Provide agentic AI systems with structured, queryable knowledge for autonomous reasoning and 

decision-making. 

FluxDB Solution: Serve as the ontological foundation for AI agent harnesses, enabling real-time knowledge 

graph RAG with sub-millisecond latency. Agents query code ontologies, domain semantics, and business logic 

for context-aware autonomous operations. 

Key Benefits: 

• Sub-10ms knowledge retrieval for real-time agent reasoning 

• Multi-hop ontological path traversal for complex queries 

• Domain-specific semantic reasoning capabilities 

• Unlimited concurrent agents querying shared knowledge 

 

     SDLC Document Generation 

Challenge: Generate and maintain comprehensive SDLC documentation for modernization projects without 

manual effort. 

FluxDB Solution: Enable agentic systems to autonomously generate architecture diagrams, API 

specifications, migration plans, and compliance reports by querying FluxDB's code and domain ontologies. 

Key Benefits: 

• Agent-generated architecture documentation stays current 

• Ontology-driven migration roadmaps with traceability 

• Automated compliance and audit documentation 

• Knowledge-based quality and coverage reports 

 

 

 

 

 

 

 

 

           Enterprise Knowledge Graphs 

Challenge: Integrate data from multiple sources into a unified semantic knowledge layer for analytics and 



 15 

decision support. 

FluxDB Solution: Build production-grade knowledge graphs that consolidate product catalogs, organizational 

structures, customer relationships, and domain knowledge into a queryable ontology. 

Key Benefits: 

• Unified view across disparate data sources 

• Semantic queries reveal hidden relationships 

• Real-time analytics over complex entity networks 

• Foundation for AI-driven business insights 

 

       Research & Academic Networks 

Challenge: Analyze complex networks of researchers, publications, citations, and institutions for research 

discovery and collaboration. 

FluxDB Solution: Store academic network ontologies with researchers, papers, organizations, and research 

areas as interconnected triples. SPARQL queries reveal collaboration patterns, research trends, and citation 

networks. 

Key Benefits: 

• Discover research collaborations and patterns 

• Citation network analysis for impact assessment 

• Research area taxonomy and classification 

• Grant and funding relationship tracking 

 

Industry Applications 

FluxDB is deployed across industries including Financial Services (regulatory compliance knowledge 

graphs), Healthcare (clinical ontologies), Manufacturing (product design knowledge), 

Telecommunications (network configuration ontologies), and Government (policy and regulation 

graphs). 

 

  



 16 

Integration Options 

──────────────────────────────────────────────────────────── 

FluxDB provides multiple integration paths to fit your architecture, from embedded deployment to 

distributed client-server configurations. 

API Options 

   

C API (Native) 

Direct C API for embedded use. Maximum 

performance with zero network overhead. 

• Sub-microsecond query latency 

• Zero-copy memory access 

• Full transaction control 

• Ideal for single-process deployments 

 

    

REST API 

HTTP/JSON interface for web and distributed 

applications. Language-agnostic access. 

• 5-20ms response times 

• 500-2000 requests/second 

• OpenAPI 3.0 specification 

• Works with any HTTP client 

 

         

SPARQL 1.1 

Industry-standard RDF query language with full W3C 

compliance. 

• SELECT, ASK, CONSTRUCT queries 

• Complex graph pattern matching 

• RDFS inference support 

• Natural language translation 

 

      

Python SDK 

Type-safe Python client with multiple connection 

modes. 

• CLIClient for command-line tools 

• RESTClient for HTTP access 

• SPARQLExecutor for queries 

• FluxDBRetriever for LangChain 

 

 

 



 17 

REST API Examples 

# Query all triples (with limit) 

curl 'http://localhost:8080/triples?limit=100' 

 

# Filter by subject 

curl 'http://localhost:8080/triples?subject=http://example.org/Alice' 

 

# Filter by predicate and object 

curl 'http://localhost:8080/triples?predicate=rdf:type&object=Person' 

 

# Count query 

curl 'http://localhost:8080/triples?count=true' 

 

# Pagination 

curl 'http://localhost:8080/triples?limit=50&offset=200' 

 

Command-Line Tools 

Tool Purpose Example Usage 
odb_load Import RDF data odb_load -d /path/db < data.nt 

odb_dump Export database odb_dump -d /path/db > backup.nt 

odb_query Pattern queries odb_query -d /path/db -s Alice 

odb_stat Database stats odb_stat -d /path/db 

odb_server REST API server odb_server -d /path/db -p 8080 

fluxdb-sparql SPARQL interface fluxdb-sparql -d /path/db 

 

OpenAPI Specification 

Full OpenAPI 3.0 specification available for REST API. Generate client libraries in any language 

using tools like OpenAPI Generator. Specification includes complete endpoint documentation, 

request/response schemas, and examples. 

 

  



 18 

Getting Started with FluxDB 

──────────────────────────────────────────────────────────── 

Get up and running with FluxDB in minutes. This guide covers installation, basic operations, and your 

first queries. 

Quick Start (5 Minutes) 

Step 1: Download & Build 

# Download FluxDB 

git clone https://github.com/yourorg/FluxDB.git 

cd FluxDB 

 

# Build from source 

make 

 

# Install binaries 

sudo make install 

 

Step 2: Create a Database 

# Create database directory 

mkdir -p /tmp/my_knowledge_base 

 

# Initialize with sample data 

./tools/odb_load -d /tmp/my_knowledge_base < demo/sample_data.nt 

 

# Verify database 

./tools/odb_stat -d /tmp/my_knowledge_base 

 

Step 3: Query the Database 

# Pattern-based query 

./tools/odb_query -d /tmp/my_knowledge_base -s "http://example.org/Alice" 

 

# Start REST API server 

./tools/odb_server -d /tmp/my_knowledge_base -p 8080 

 

# Query via REST API 

curl 'http://localhost:8080/triples?limit=10' 

 



 19 

Working with the Demo Database 

FluxDB includes a comprehensive demo database with 1,043 triples representing an academic 

network. This is perfect for learning and testing. 

Demo Database Contents 

• Researchers: PhD students, professors, and postdocs 

• Organizations: MIT, Stanford, CMU, Berkeley, and more 

• Research Areas: Machine Learning, NLP, Computer Vision, etc. 

• Publications: Papers with authors and citations 

• Relationships: Advisors, affiliations, collaborations 

 

Best Practices 

    

Design Your Ontology First 

Plan your class hierarchy, properties, and 

relationships before loading data. Use established 

vocabularies to maximize interoperability. 

   

Batch Load for Performance 

Use bulk loading tools rather than individual inserts. 

FluxDB achieves 78K+ triples/second with batch 

operations. 

     

Secure Your Deployment 

Bind REST API to localhost by default. Use nginx for 

HTTPS, authentication, and rate limiting in production. 

       

Monitor Database Size 

Use odb_stat regularly to track triple count, database 

size, and index statistics. Plan storage accordingly. 

 

Training & Support 

FluxDB includes comprehensive documentation, example code, and quick start guides. Professional 

support, training, and consulting services are available. Contact sales@FluxDB.ai for more 

information. 

 

 



 20 

Contact Information 

──────────────────────────────────────────────────────────── 

Get in Touch 

Ready to transform your legacy systems with agentic AI and ontological knowledge graphs? Our 

team is here to help you get started. 

Sales & Inquiries: 

sales@FluxDB.ai 

Website: 

www.FluxDB.ai 

 

How We Can Help 

      

Proof of Concept 

Start with a focused POC to validate FluxDB for your 

use case. We'll help you design your ontology, load 

sample data, and demonstrate performance on your 

queries. 

          

Implementation Services 

Our experts can design and build your production 

knowledge graph, from ontology design to data 

migration to deployment and optimization. 

      

Training & Workshops 

Comprehensive training for your team on RDF, 

SPARQL, ontology design, and FluxDB best 

practices. Both virtual and on-site options available. 

   

Enterprise Support 

Production support with SLAs, priority bug fixes, 

performance optimization, and direct access to 

FluxDB engineering team. 

 

Typical Engagement Process 



 21 

1. Discovery Call: Discuss your use case, requirements, and technical environment. (1 hour) 

2. Technical Assessment: Review your data sources, ontology requirements, and integration 

points. (1-2 weeks) 

3. Proof of Concept: Build working prototype with sample data and representative queries. (2-4 

weeks) 

4. Production Deployment: Full-scale implementation with production data and infrastructure. (4-12 

weeks) 

5. Ongoing Support: Training, optimization, and maintenance as needed. 

 

Why Choose FluxDB? 

✓  Production Proven: v2.0.0 is stable, tested, and ready for enterprise deployment 

✓  Performance Leader: Sub-millisecond queries with 78K+ triples/sec bulk loading 

✓  Purpose-Built for AI Agents: Designed from the ground up for agentic harnesses 

✓  Open Standards: Full RDF, SPARQL 1.1, and W3C compliance 

✓  Comprehensive APIs: C, REST, SPARQL, and Python SDKs included 

✓  Expert Team: Knowledge graph specialists with decades of experience 

✓  Flexible Licensing: Options for evaluation, development, and production use 

 

Start Your Journey Today 

Transform your legacy modernization, brownfield development, and agentic AI initiatives with 

FluxDB's ontological knowledge base. Contact us at sales@FluxDB.ai to schedule a discovery call. 

 

⚡ FluxDB 
Ultra-Fast Ontological Knowledge Base for Agentic AI Systems 

 

© 2026 FluxDB. All rights reserved. 

FluxDB is a production-ready knowledge graph database engineered for enterprise applications. 

Version 2.0.0 | Production Ready 


