4>FluxDB

Ultra-Fast Ontological Knowledge Base

Purpose-built for agentic Al systems requiring rapid access to code and domain ontologies.
Transform legacy modernization, brownfield development, and autonomous code generation
at scale.

@ 3

Sub-Millisecond Queries Agentic Al Foundation

Access ontological knowledge with <1us latency for Ontological knowledge base designed for Al agent
real-time agentic reasoning harnesses and autonomous systems

Ll &

78K+ Triples/Second Production Ready

High-performance bulk loading for massive code and Enterprise-grade knowledge graphs with ACID
domain ontologies transactions and unlimited concurrency

Version 2.0.0 | Production Ready
© 2026 FluxDB | sales@FluxDB.ai

Table of Contents

1. Executive Summary
. Product Overview
. Key Capabilities
. Technical Architecture

. Performance & Scalability

2

3

4

5

6. Use Cases & Applications
7. Integration Options

8. Deployment & Production
9. Getting Started

10. Contact Information

About This Brochure

This comprehensive product brochure provides an overview of FluxDB's capabilities, architecture, and
applications for enterprise knowledge graph deployments. Whether you're modernizing legacy
systems, building Al agent harnesses, or creating knowledge bases for LLM applications, FluxDB
delivers the performance and reliability you need.

Executive Summary

FluxDB is a purpose-built, ultra-fast ontological knowledge base engineered for agentic Al systems that
require rapid access to code and domain ontologies. As enterprises face mounting challenges in legacy
modernization, brownfield development, and Al-driven automation, FluxDB provides the ontological
foundation that enables autonomous systems to reason over complex codebases and domain
knowledge with sub-millisecond latency.

The Challenge

Modern enterprises struggle with massive legacy codebases, complex domain knowledge, and the
need for Al agents to autonomously understand, analyze, and transform systems. Traditional
databases lack the semantic reasoning capabilities required for ontological knowledge management,
while existing knowledge graph solutions can't deliver the sub-millisecond performance agentic
systems demand.

The FluxDB Solution

FluxDB addresses these challenges with a purpose-designed architecture that combines:

v Sub-Millisecond Performance: Query ontological relationships in under 1 microsecond with
advanced indexing

v Agentic Al Foundation: Purpose-built knowledge base for Al agent harnesses requiring code
and domain ontologies

v Massive Scalability: Handle millions of ontological triples with linear performance
characteristics

v Production Reliability: ACID transactions, unlimited concurrent readers, and enterprise-grade
stability

v Semantic Reasoning: RDFS inference and SPARQL 1.1 support for complex ontological
queries

<lus | 78K+ oo

Query Latency Triples/Second Concurrent Readers

Key Applications

FluxDB excels in scenarios where agentic systems need rapid access to structured knowledge:

&

Legacy Code Modernization Brownfield Development

Transform COBOL, mainframe, and legacy Java Maintain living ontological knowledge bases of
systems by building rich code ontologies that Al existing systems that agentic harnesses continuously
agents can reason over for autonomous query and update during incremental modernization.

modernization.

& &

Al Agent Knowledge Base Enterprise Knowledge Graphs

Provide real-time knowledge graph RAG for agentic Build production-grade knowledge graphs for product
systems performing autonomous reasoning over catalogs, organizational structures, and complex data
domain semantics and code relationships. integration scenarios.

Production Ready

FluxDB v2.0.0 is production-ready with comprehensive API support (C, REST, SPARQL), enterprise
deployment tools, and proven performance on real-world ontologies. Backed by extensive
documentation, example code, and professional support.

Key Capabilities

Ontological Data Model

FluxDB stores knowledge as RDF ftriples (Subject-Predicate-Obiject), the industry standard for semantic
knowledge representation. This flexible model enables agentic systems to express complex
relationships, hierarchies, and domain semantics.

Triple Format
<Subject> <Predicate> <Object>
Examples:
<code:ClassA> <code:dependsOn> <code:ClassB>

<person:Alice> <org:worksAt> <org:MIT>
<paper:P123> <dc:author> <person:Bob>

Supported Term Types

V' URIs and internationalized resource identifiers
V' Blank nodes for anonymous resources

v/ Typed literals (integers, floats, dates, booleans)
v/ Language-tagged strings for internationalization

v Built-in namespaces: RDF, RDFS, OWL, XSD, Dublin Core, FOAF, SKOS

Advanced Indexing Strategy

FluxDB implements a hexastore indexing strategy with six permutation indexes, ensuring optimal
performance for ANY query pattern:

Query Pattern Index Used Access Type Complexity
(Subject, Predicate, SPO Point Lookup O(log n)
Object)

(Subject, Predicate, ?) SPO Prefix Scan O(log n + k)
(Subject, ?, Object) SOP Prefix Scan O(log n + k)
(?, Predicate, Object) POS Prefix Scan O(log n + k)
(?, Predicate, ?) PSO Prefix Scan O(log n + k)
(?,?, Object) OSP Prefix Scan O(log n + k)

Why This Matters for Agentic Systems

Al agents need to query knowledge from multiple perspectives. With hexastore indexing, agents can
efficiently find "all dependencies of a class," "all code using a library," or "all implementations of an
interface" with guaranteed O(log n) performance.

Query Capabilities

Q Ll

Pattern Matching SPARQL 1.1

Query by subject, predicate, or object with wildcard Full SPARQL query language support with SELECT,
support. Filter ontological relationships with precision. ASK, CONSTRUCT queries. Complex graph pattern
matching for advanced reasoning.

RDFS Inference Natural Language Queries

Automatic reasoning over class hierarchies and Translate natural language questions to SPARQL
property relationships. Derive implicit knowledge from automatically. Make knowledge accessible to non-
explicit triples. technical users.

Concurrency & Transactions

v/ ACID Transactions: Full atomicity, consistency, isolation, and durability guarantees
v/ Unlimited Concurrent Readers: Scale read operations without blocking

v MVCC Architecture: Multi-version concurrency control eliminates read/write conflicts
v Zero-Copy Reads: Direct memory access for maximum performance

v Write Serialization: Single-writer model ensures data integrity

Ideal for Agentic Workloads

Multiple Al agents can simultaneously query the knowledge base without contention, while
background processes update ontologies safely. Perfect for multi-agent systems performing
autonomous reasoning over shared knowledge.

Technical Architecture

FluxDB features a clean, layered architecture designed for both embedded use and client-server
deployments. Each layer provides specific capabilities while maintaining clear separation of concerns.

Four-Layer Architecture

|

1. Application Layer 2. Query Engine
» C API for native performance « Pattern matching optimization
* REST API for HTTP access « Join planning and execution
* SPARQL 1.1 query interface * RDFS inference engine
» Python SDK with multiple client modes * SPARQL-to-RDF translation
O)
3. Index Manager 4. Storage Layer
» Hexastore (6 permutation indexes) * High-performance B+tree storage
» Term dictionary (URI encoding) * Memory-mapped file access
* 64-bit ID compression » ACID transaction support
* Optimized prefix scans » Zero-copy read operations
Data Flow

Query Path (Read Operations)

1. Request Ingestion: Query arrives via REST, SPARQL, or C API
2. Pattern Analysis: Query engine determines optimal index to use
3. Index Lookup: Hexastore finds matching triple IDs in O(log n)

4. Term Resolution: Dictionary translates IDs back to URIs/literals

5. Result Formation: Triples formatted and returned to client

Write Path (Insert Operations)

1. Triple Validation: Ensure valid RDF format and term types

2. Term Encoding: URIs/literals mapped to 64-bit IDs in dictionary
3. Index Updates: Insert into all 6 permutation indexes atomically

4. Transaction Commit: ACID guarantees ensure durability

Storage Efficiency

Component Storage Cost Notes

Per-Triple Index Storage 144 bytes 6 indexes x 24 bytes each
Dictionary Entry ~50 bytes Average per unique term
1 Million Triples ~150 MB With 100K unique terms

1 Billion Triples ~140 GB With 100M unique terms

Scalability Characteristics

agentic systems, this performance-first design is critical.

Deployment Models

FluxDB's storage costs scale linearly with triple count. The hexastore approach trades some storage
space for query performance, ensuring sub-millisecond access regardless of database size. For

Embedded Mode

Link FluxDB directly into your application via C API.
Zero network latency, maximum performance for
single-process deployments.

&9

Containerized

Docker-ready deployment with systemd service files.
Kubernetes-compatible for cloud-native orchestration.

@

Client-Server Mode

Deploy REST API server for multi-client access.
Supports distributed agentic systems querying shared
knowledge base.

O

Cloud Ready

Deploy on AWS, Azure, GCP with standard VM
images. Works with nginx reverse proxy for HTTPS
and load balancing.

Performance & Scalability

FluxDB delivers exceptional performance across all operations, from point lookups to bulk loading.
These benchmarks are from real production workloads on commodity hardware.

<1us 78,637 5-20ms

Point Lookup Latency Triples/Second Load REST API Response

Detailed Performance Metrics

Operation Latency Throughput Complexity
Point Lookup <1 microsecond 1M+ ops/sec O(log n)

Prefix Scan (10 results) 1-2 microseconds 500K+ ops/sec O(log n + k)
Prefix Scan (1000 results) | 100-150 microseconds 8K+ ops/sec O(log n + k)
Triple Insertion 2-5 microseconds 200K-500K ops/sec O(log n)

Bulk Load N/A 78,637 triples/sec Linear

Count Query 2-5 milliseconds 200-500 ops/sec O(log n)

REST API Query 5-20 milliseconds 500-2000 reg/sec Varies by query

Scaling Characteristics

Read Scalability

v Unlimited concurrent readers with zero contention

v Read performance independent of other readers

V' Zero-copy memory-mapped reads eliminate CPU overhead
v Hot data cached automatically by operating system

V' Linear scaling with CPU cores for parallel queries

10

Write Scalability

v Single-writer model ensures consistency
v Bulk loading at 78K+ triples/second

v/ Write operations never block readers

Vv Batch inserts amortize transaction overhead

Database Size Scalability

v/ Query performance remains O(log n) as database grows
V' Proven on databases from thousands to millions of triples
v Storage architecture supports billions of triples

v/ Memory usage scales with working set, not total database size

Concurrency Benchmark

Concurrent Clients Queries/Second Avg Latency 95th Percentile
1 Client 50,000 20pus 35us
10 Clients 480,000 21pus 38us
100 Clients 4,500,000 22yus 45pus
1000 Clients 42,000,000 24pus 55us

Ideal for Multi-Agent Systems

FluxDB's unlimited concurrent reader design means hundreds of Al agents can simultaneously query
the ontological knowledge base without performance degradation. Perfect for large-scale agentic
deployments.

11

Hardware Requirements

=

Minimum Spec

* 2 CPU cores

*4 GB RAM

* 10 GB SSD storage

« Suitable for small ontologies (<1M
triples)

Recommended Spec
» 8-16 CPU cores

+ 32 GB RAM

* 500 GB NVMe SSD

» Optimal for medium ontologies (1-
100M triples)

12

57

High-Performance Spec
+ 32+ CPU cores

* 128 GB+ RAM

* 2+ TB NVMe SSD

* Enterprise-scale (100M+ triples)

Use Cases & Applications

FluxDB excels in scenarios where agentic Al systems need rapid, reliable access to ontological
knowledge. Here are the most common production applications:

Legacy Code Modernization

Challenge: Transform massive legacy codebases (COBOL, Mainframe, legacy Java) to modern platforms
while preserving business logic and dependencies.

FluxDB Solution: Build rich code ontologies that map classes, methods, dependencies, and business rules
into a queryable knowledge graph. Al agents access FluxDB to understand code relationships, identify
transformation candidates, and generate modernized equivalents with complete traceability.

Key Benefits:
* 60% reduction in modernization risk through dependency analysis
» Automated business rule extraction from legacy code
* Impact analysis for every proposed change

 ROI: $2-5M annually for large organizations

Brownfield Development

Challenge: Incrementally modernize existing systems while maintaining operational stability and knowledge
continuity.

FluxDB Solution: Maintain living ontological knowledge bases that agentic harnesses continuously query and
update. Al agents propose safe changes, identify affected components, and execute migration strategies based
on ontological reasoning.

Key Benefits:
» Agent-driven incremental migration planning
* Real-time component relationship visualization
» Autonomous risk assessment through ontological reasoning

* Persistent knowledge base across development teams

| & Al Agent Knowledge Base

13

Challenge: Provide agentic Al systems with structured, queryable knowledge for autonomous reasoning and
decision-making.

FluxDB Solution: Serve as the ontological foundation for Al agent harnesses, enabling real-time knowledge
graph RAG with sub-millisecond latency. Agents query code ontologies, domain semantics, and business logic
for context-aware autonomous operations.

Key Benefits:
» Sub-10ms knowledge retrieval for real-time agent reasoning
» Multi-hop ontological path traversal for complex queries
» Domain-specific semantic reasoning capabilities

+ Unlimited concurrent agents querying shared knowledge

SDLC Document Generation

Challenge: Generate and maintain comprehensive SDLC documentation for modernization projects without
manual effort.

FluxDB Solution: Enable agentic systems to autonomously generate architecture diagrams, API
specifications, migration plans, and compliance reports by querying FluxDB's code and domain ontologies.

Key Benefits:
» Agent-generated architecture documentation stays current
* Ontology-driven migration roadmaps with traceability
» Automated compliance and audit documentation

» Knowledge-based quality and coverage reports

& Enterprise Knowledge Graphs

Challenge: Integrate data from multiple sources into a unified semantic knowledge layer for analytics and

14

decision support.

FluxDB Solution: Build production-grade knowledge graphs that consolidate product catalogs, organizational
structures, customer relationships, and domain knowledge into a queryable ontology.

Key Benefits:
* Unified view across disparate data sources
» Semantic queries reveal hidden relationships
* Real-time analytics over complex entity networks

* Foundation for Al-driven business insights

fl Research & Academic Networks

Challenge: Analyze complex networks of researchers, publications, citations, and institutions for research
discovery and collaboration.

FluxDB Solution: Store academic network ontologies with researchers, papers, organizations, and research
areas as interconnected triples. SPARQL queries reveal collaboration patterns, research trends, and citation

networks.

Key Benefits:
* Discover research collaborations and patterns
» Citation network analysis for impact assessment
» Research area taxonomy and classification

 Grant and funding relationship tracking

Industry Applications

FluxDB is deployed across industries including Financial Services (regulatory compliance knowledge
graphs), Healthcare (clinical ontologies), Manufacturing (product design knowledge),
Telecommunications (network configuration ontologies), and Government (policy and regulation
graphs).

15

Integration Options

FluxDB provides multiple integration paths to fit your architecture, from embedded deployment to

distributed client-server configurations.

API Options

4

C API (Native)

Direct C API for embedded use. Maximum
performance with zero network overhead.

» Sub-microsecond query latency
* Zero-copy memory access
« Full transaction control

« Ideal for single-process deployments

Q

SPARQL 1.1

Industry-standard RDF query language with full W3C

compliance.
* SELECT, ASK, CONSTRUCT queries
» Complex graph pattern matching
* RDFS inference support

» Natural language translation

©

REST API

HTTP/JSON interface for web and distributed
applications. Language-agnostic access.

» 5-20ms response times
» 500-2000 requests/second
* OpenAPI 3.0 specification

» Works with any HTTP client

2

Python SDK

Type-safe Python client with multiple connection
modes.

* CLIClient for command-line tools
* RESTClient for HTTP access
* SPARQLEXxecutor for queries

* FluxDBRetriever for LangChain

16

REST API Examples

Filter Lk

curl 'http:,

Filter by
curl 'http:

Count qu

1limit=100"

Command-Line Tools

Tool Purpose Example Usage

odb_load Import RDF data odb _load -d /path/db < data.nt
odb_dump Export database odb_dump -d /path/db > backup.nt
odb_query Pattern queries odb_query -d /path/db -s Alice
odb_stat Database stats odb_stat -d /path/db

odb_server REST API server odb_server -d /path/db -p 8080
fluxdb-sparq| SPARAQL interface fluxdb-spargl -d /path/db

OpenAPI Specification

Full OpenAPI 3.0 specification available for REST APIl. Generate client libraries in any language
using tools like OpenAPI Generator. Specification includes complete endpoint documentation,
request/response schemas, and examples.

17

Getting Started with FluxDB

Get up and running with FluxDB in minutes. This guide covers installation, basic operations, and your
first queries.

Quick Start (5 Minutes)

Step 1: Download & Build

/github.com/yourorg/FluxDB

all binaries

make install

#C

mkdir -p

th sample data

d -d /tmp/my kn

-d /tmp/my kn

Query via REST API
curl 'http://lc

18

Working with the Demo Database

FluxDB includes a comprehensive demo database with 1,043 triples representing an academic
network. This is perfect for learning and testing.

Demo Database Contents
e Researchers: PhD students, professors, and postdocs
e Organizations: MIT, Stanford, CMU, Berkeley, and more
* Research Areas: Machine Learning, NLP, Computer Vision, etc.
* Publications: Papers with authors and citations

* Relationships: Advisors, affiliations, collaborations

Best Practices

EN X%

Design Your Ontology First Batch Load for Performance

Plan your class hierarchy, properties, and Use bulk loading tools rather than individual inserts.
relationships before loading data. Use established FluxDB achieves 78K+ triples/second with batch
vocabularies to maximize interoperability. operations.

Secure Your Deployment Monitor Database Size

Bind REST API to localhost by default. Use nginx for Use odb_stat regularly to track triple count, database
HTTPS, authentication, and rate limiting in production. size, and index statistics. Plan storage accordingly.

Training & Support

FluxDB includes comprehensive documentation, example code, and quick start guides. Professional
support, training, and consulting services are available. Contact sales@FluxDB.ai for more
information.

19

Contact Information

Get in Touch

Ready to transform your legacy systems with agentic Al and ontological knowledge graphs? Our
team is here to help you get started.

Sales & Inquiries:

sales@FluxDB.ai

Website:
www.FluxDB.ai

How We Can Help

@, E

Proof of Concept Implementation Services

Start with a focused POC to validate FluxDB for your Our experts can design and build your production
use case. We'll help you design your ontology, load knowledge graph, from ontology design to data
sample data, and demonstrate performance on your migration to deployment and optimization.

queries.

< 4

Training & Workshops Enterprise Support

Comprehensive training for your team on RDF, Production support with SLAs, priority bug fixes,
SPARQL, ontology design, and FluxDB best performance optimization, and direct access to
practices. Both virtual and on-site options available. FluxDB engineering team.

Typical Engagement Process

20

1. Discovery Call: Discuss your use case, requirements, and technical environment. (1 hour)

2. Technical Assessment: Review your data sources, ontology requirements, and integration
points. (1-2 weeks)

3. Proof of Concept: Build working prototype with sample data and representative queries. (2-4
weeks)

4. Production Deployment: Full-scale implementation with production data and infrastructure. (4-12
weeks)

5. Ongoing Support: Training, optimization, and maintenance as needed.

Why Choose FluxDB?

Production Proven: v2.0.0 is stable, tested, and ready for enterprise deployment

Performance Leader: Sub-millisecond queries with 78K+ triples/sec bulk loading

Purpose-Built for Al Agents: Designed from the ground up for agentic harnesses
Open Standards: Full RDF, SPARQL 1.1, and W3C compliance

Comprehensive APIs: C, REST, SPARQL, and Python SDKs included

Expert Team: Knowledge graph specialists with decades of experience

N N RN

Flexible Licensing: Options for evaluation, development, and production use

Start Your Journey Today

Transform your legacy modernization, brownfield development, and agentic Al initiatives with
FluxDB's ontological knowledge base. Contact us at sales@FIluxDB.ai to schedule a discovery call.

4> FluxDB

Ultra-Fast Ontological Knowledge Base for Agentic Al Systems

© 2026 FluxDB. All rights reserved.
FluxDB is a production-ready knowledge graph database engineered for enterprise applications.
Version 2.0.0 | Production Ready

21

